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Infinity Laplacian

Let an open domain D ⊂ Rd. Consider g : ∂D → R a continuous
function.
Problem
Compute u : D → R such that

u = g on ∂D.
u has minimal ||∇u||∞
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Example in one dimension
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Figure 1: Infinity laplacian in one dimension
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Equation description

Let an open domain D ⊂ Rd. Consider g : ∂D → R a continuous
function.
Problem
Solve the following equation{

∆∞u(x) =
∑

i,j ∂
2
i,ju(x) ∂iu(x) ∂ju(x) = 0 x ∈ D

u(x) = g(x) x ∈ ∂D
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Game description: Continuous Weigthed Reachability

ε D

g

Figure 2: Continuous space reachability games
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Dynamic

Let ε > 0. Consider the following dynamic
State space: D
Reward function g : ∂D → R
Initial position x ∈ D
Infinite random turn-based game
At each turn, the corresponding player chooses where to move
the state within B(x, ε) ∩ D
When arriving at x ∈ ∂D, min-player pays g(x) to the
max-player
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Dynamic programming property

Let u(ε) : D → R be the value. Then, for x ∈ D,

u(ε)(x) = 1
2

(
sup

y∈B(x,ε)∩D
u(ε)(y) + inf

y∈B(x,ε)∩D
u(ε)(y)

)
.
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Game descrition

Let an open domain D ⊂ Rd. Consider g : ∂D → R a continuous
function.
Problem
Compute the limit value

u(x) := lim
ε→0

u(ε)(x) .
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The game theory point of view has

significantly improved the understanding

of the partial differential equation itself.
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Question
What PDEs have a game interpretation?
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Differential games

Let T > 0, x0 ∈ Rd.
Dynamic {

ẋ(t) = f(x(t), a(t), b(t))
x(0) = x0

Payoff ∫ T

0
g(x(s), a(s), b(s))ds + g0(xT)

Value
u(T, x0) value of the game.
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Hamilton-Jacobi equations

The value function u satisfies{
∂tu(t, x) + H(∇u(t, x), x) = 0
u(0, x) = g0(x)

where

H(p, x) := − sup
a∈A

inf
b∈B

{g(x, a, b) + f(x, a, b) · p} .
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Example: Collecting coins
The environment might be as follows.

Figure 3: Environment for collecting coins
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Example: Collecting coins

Dynamic 
ẋ1(t) = b(t)
ẋ2(t) = a(t)
x(0) = x0 = (0, 0)

Payoff ∫ 1

0
g(x(s))ds

Value u(1, 0) is the aggregation of coins the max-player can
get in one unit of time.
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Games assists Analysis
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Homogenization
Let H : Rn × Rn → R be a “hamiltonian”. Define, for ε > 0,{

∂tu(ε) + H(∇u(ε), x/ε) = 0 x ∈ D
u(ε)(0, x) = u0(x) x ∈ D

Definition (Homogenization)
The hamiltonian H homogenizes if

1 (u(ε)) −−−→
ε→0

u
2 u is the solution of{

∂tu + H(∇u) = 0 x ∈ D
u(0, x) = u0(x) x ∈ D

where H is the effective hamiltonian.
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Example: Collecting coins

The corresponding Hamiltonian is

H(p, x) = − sup
a∈A

inf
b∈B

{g(x, a, b) + f(x, a, b) · p}

= − sup
a∈[−1,1]

inf
b∈[−1,1]

{g(x) + bp1 + ap2}

= −(g(x)− |p1|+ |p2|) .
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Homogenization question

Theorem (Sufficient conditions)
If H is continuous and

periodic in x, i.e. H(p, x + x0) = H(p, x)
coercive in p (uniformly in x), i.e. lim||p||∞→∞ H(p, x) = ∞

then H homogenizes.
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Stochastic Homogenization
Let H : Rn × Rn × Ω → R be a random hamiltonian. Define, for
ε > 0,

(PDEε)

{
∂tu(ε) + H(∇u(ε), x/ε, ω) = 0 x ∈ Ω

u(ε)(0, x) = u0(x) x ∈ Ω

Definition (Stochastic Homogenization)
The random Hamiltonian H homogenizes if

1 (U(ε)) −−−→
ε→0

u
2 u is the solution of{

∂tu + H(∇u) = 0 x ∈ Ω

u(0, x) = u0(x) x ∈ Ω

where H is the effective (deterministic) hamiltonian.
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Going back to games

Assume that u0 is linear and the equation (PDEε=1) has a
(random) solution. Then,

U(ε)(t, x) := εU(1)
( t
ε
,
x
ε

)
is a solution of (PDEε).
In particular, if H homogenizes,

u(1, 0) = lim
ε→0

εU(1)
(

1
ε
,
0
ε

)
= lim

T→∞

1
TU(1) (T, 0) .
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Going back to games

If the equation (PDEε) has a game interpretation, we would have

Lemma
If H homogenizes, then the corresponding (random) differential
game has a deterministic limit value.
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Question
What games in Rd (or the grid Zd) have a limit value?
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Random game on the plane
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Figure 4: Average payoff game in random media

Raimundo Saona Game-theoretical PDEs



PDEs describe Games
Analysis question

Limit value
Percolation game
Transient variant

Dynamic
Consider the following dynamic

State space is Z2

Random reward function G : Z2 → R, where G(z) ∼ B(p), for
p ∈ [0, 1]
Initial state is (0, 0)
Infinite turn-based game
At each turn, the corresponding player chooses where to move
the state:

Max-player chooses up or down
Min-player chooses left or right

The reward is the average reward after n stages

1
n

n∑
m=1

G(zm) .
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Percolation thresholds

Denote the (random) mean value Vn

Theorem
There exists 0 < p0 < p1 < 1 such that

(Vn) −−−→n→∞
0 ∀p < p0

(Vn) −−−→n→∞
1 ∀p > p1
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Transient variant

Consider the game that restricts the players to (essentially) never
enter B(0,

√
m) at stage m.

Theorem
For all p ∈ [0, 1], there exists a limit value v∞, i.e.

(Vn) −−−→n→∞
v∞ .

(for now, we show convergence in probability)

Raimundo Saona Game-theoretical PDEs



PDEs describe Games
Analysis question

Limit value
Percolation game
Transient variant

Transient variant, details

Let ε > 0. Define

Zm ≈ {z ∈ Z2 : ||z||2 ≤ m(1+ε)1/2 − 1} ,

where the detail is that |Zm+1 \ Zm| = 1.
Restrict the players from entering Zm at stage m. Then,

(Vn) is very close to v∞ .
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Proof steps

Vn concentrates on its expectation E(Vn)

(E(Vn)) −−−→n→∞
v∞

(E(Vn))n∈N converge fast to v∞
Therefore, Vn concentrates on v∞

The proof technique does not generalize if there is a lot of
dependence from the past.
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Why transient?

We rely on Azuma’s inequality.

Lemma (Concentration of martingales)

Let (Xn)n∈N be a martingale and (cn)n∈N a real sequence such
that, for all n ∈ N, |Xn − Xn+1| ≤ cn almost surely. Then, for all
n ∈ N and ε > 0,

P(|Xn − X0| ≥ ε) ≤ 2 exp
(

−ε2

2
∑n−1

m=0 c2m

)
.
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Proof: Concentration on E(Vn)

We aim to show that P(|Vn − E(Vn)| ≥ ε) decreases with n.
We will do so by defining a martingale and applying Azuma’s
inequality.
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Proof: Concentration on E(Vn) (2)

For m ∈ N,
Define the σ-algebra

Cm := σ({G(z, i, j) : z ∈ Zm, i ∈ I, j ∈ J}) .

Note the inequality

|E(Vn(0)|Cm)− E(Vn(0)|Cm+1)| ≤

{
1
n m < n2/(1+ε)

0 m ≥ n2/(1+ε)
.

Define the martingale

Xm := E(Vn(0)|Cm) .
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Proof: Concentration on E(Vn) (3)

Denote m(n) = n2/(1+ε). Then, applying Azuma’s inequality,

P(|Vn − E(Vn)| ≥ ε) = P(|Xm(n) − X0| ≥ ε)

≤ 2 exp
(

−ε2

2
∑n−1

m=0(1/n)2

)

≤ 2 exp
(
−ε2n2

2m(n)

)
≤ 2 exp

(
−ε2

2 n2ε/(1+ε)

)
.

Therefore, Vn concentrates on E(Vn).
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Proof steps

Vn concentrates on its expectation E(Vn)

(E(Vn)) −−−→n→∞
v∞

(E(Vn))n∈N converge fast to v∞
Therefore, Vn concentrates on v∞
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Proof: Convergence of E(Vn)

We aim to show that E(Vn) converges.
We will use that subadditive sequences converge.

Lemma (Convergence of subadditive sequences)

Let ϕ : N → (0,∞) be an increasing function such that∑∞
n=1 ϕ(n)/n2 <∞, and (f(n))n∈N be a sequence such that, for all

n ∈ N and all m ∈ [n/2, 2n],

f(n + m) ≤ f(n) + f(m) + ϕ(n + m) .

Then, there exists L ∈ R such that(
f(n)
n

)
−−−→
n→∞

L .
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Proof: Convergence of E(Vn) (2)

P(∃z ∈ B∞(0, 2n) |Vn(z)− E(Vn)| ≥ ε)

≤
∑

z∈B∞(0,2n)
P(|Vn(z)− E(Vn)| ≥ ε) (union sum)

=
∑

z∈B∞(0,2n)
P(|Vn(0)− E(Vn)| ≥ ε) (space-homogeneity)

≤ |B∞(0, 2n)|2 exp
(
−ε2

2 n2ε/(1+ε)

)
(Azuma’s inequality)

≤ (4n + 1)d2 exp
(
−ε2

2 n2ε/(1+ε)

)
(Azuma’s inequality)

=: ψ(n, ε) .
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Proof: Convergence of E(Vn) (3)

E
(

min
z∈B∞(0,2n)

Vn(z)
)

≥ 0P
(

min
z∈B∞(0,2n)

Vn(z) ≤ E(Vn)− εn

)
+ (E(Vn)− εn)P

(
min

z∈Z(2n)
Vn(z) ≥ E(Vn)− εn

)
≥ (1 − ψ(n, εn))E(Vn)− εn

≥ E(Vn)− (ψ(n, εn) + εn) .

Now we can show that nE(Vn) is subadditive.
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Proof: Convergence of E(Vn) (4)

By playing by blocks, we obtain, for m ≤ 2n,

(m + n)E(Vm+n) ≥ mE(Vm) + nE( min
z∈Z(2n)

Vn(z))

≥ mE(Vm) + nE(Vn)− n(ψ(n, εn) + εn) .

which is sufficient subadditivity and therefore, there exists v∞ such
that

E(Vn) −−−→n→∞
v∞ .
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Proof steps

Vn concentrates on its expectation E(Vn)

(E(Vn)) −−−→n→∞
v∞

(E(Vn))n∈N converge fast to v∞
Therefore, Vn concentrates on v∞
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Proof: Fast convergence of E(Vn)

Recall that
E(V2n) ≥ E(Vn)− (ψ(n, εn) + εn) .

Moreover, we can choose δ > 0 such that

(ψ(n, εn) + εn) ∈ O(n−δ) .
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Proof: Fast convergence of E(Vn)

By the telescopic sum, we get for ℓ > 0

E(V2ℓn) ≥ E(Vn)−
ℓ−1∑
ℓ′=0

E
(
V2ℓ′n

)
− E

(
V2ℓ′+1n

)
≥ E(Vn)−

ℓ−1∑
ℓ′=0

K(2ℓ′n)−δ

≥ E(Vn)− n−δ K
1 − 2−δ

≥ E(Vn) + O(n−δ) .

Therefore,
|v∞ − E(Vn)| ∈ O(n−δ) .
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Proof steps

Vn concentrates on its expectation E(Vn)

(E(Vn)) −−−→n→∞
v∞

(E(Vn))n∈N converge fast to v∞
Therefore, Vn concentrates on v∞
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Proof: Concentration on v∞

Recall that
|v∞ − E(Vn)| ∈ O(n−δ)

P(|Vn − E(Vn)| ≥ ε) ≤ exp
(
−ε2

2 n2ε/(1+ε)
)

Therefore, there exists K > 0 such that

P(|Vn − v∞| ≥ ε+ Kn−δ)

≤ P(|Vn − E(Vn)| ≥ ε+ Kn−δ − |E(Vn)− v∞|)
≤ P(|Vn − E(Vn)| ≥ ε)

≤ exp

(
−ε2

2 n2ε/(1+ε)

)
.
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Transient variant, formalization

Let ε > 0. Define

Zm ≈ {z ∈ Z2 : ||z||2 ≤ m(1+ε)1/2 − 1} .

Restrict the players from entering Zm at stage m. Then, there
exists K, δ > 0 such that for all ε > 0

P(|Vn − v∞| ≥ ε+ Kn−δ) −−−→
n→∞

0 .

Raimundo Saona Game-theoretical PDEs



PDEs describe Games
Analysis question

Limit value
Percolation game
Transient variant

Random game on the plane
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Figure 5: Average payoff game in random media
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